Quick Start (30 min)
Run three short experiments to understand the most important LLM design choices.
Setup (5 min)
bash
# 1. Clone the repo
git clone https://github.com/joyehuang/minimind-notes.git
cd minimind-notes
# 2. Activate your virtual environment
source venv/bin/activate
# 3. Download experiment datasets (optional)
cd modules/common
python datasets.py --download-all
cd ../..Experiment 1: Normalization (10 min)
Observe gradient vanishing and see why Pre-LN + RMSNorm is stable.
bash
cd modules/01-foundation/01-normalization/experiments
python exp1_gradient_vanishing.pyNext: /en/modules/01-foundation/01-normalization/
Experiment 2: RoPE (10 min)
Compare absolute position encoding and learn why RoPE extrapolates better.
bash
cd ../../02-position-encoding/experiments
python exp1_rope_basics.pyNext: /en/modules/01-foundation/02-position-encoding/
Experiment 3: Attention (10 min)
Understand how Q/K/V and attention weights work.
bash
cd ../../03-attention/experiments
python exp1_attention_basics.pyNext: /en/modules/01-foundation/03-attention/
Where to go next
- Systematic Study:
/en/docs/guide/systematic - Deep Mastery:
/en/docs/guide/mastery - Roadmap:
/en/ROADMAP